Radiative decay into γ -baryon of dynamically generated resonances from the vector-baryon interaction

E.J. GARZÓN¹, BAO-XI SUN², E. OSET¹

¹Departamento de Física Teórica and IFIC, Universitat de Valéncia-CSIC, Valencia, Spain
²Institute of Theoretical Physics, College of Applied Sciences Beijing University of Technology, Beijing, China

June 2, 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon COLLEGE OF WILLIAM AND MARY WILLIAMSBURG, VIRGINIA

Radiative decay of dynamically generated resonances from vector-baryon

1 / 20

Dynamically generated resonances

3 Radiative decay

- Previous work in radiative decay of mesons
- Radiative decay of baryons into γ-Baryon

4 Helicity amplitudes

Formalism for VV interaction

We follow the formalisim¹ of the hidden gauge interaction of vector mesons

$$\mathcal{L}_{III} = -\frac{1}{4} \langle V_{\mu\nu} V^{\mu\nu} \rangle \tag{1}$$

where the symbol $\langle \rangle$ stands for the trace in the SU(3) space where

$$V_{\mu\nu} = \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu} - ig\left[V_{\mu}, V_{\nu}\right]$$
⁽²⁾

The lagrangian gives a contact term of four and three vector vertex

$$\mathcal{L}_{III}^{(c)} = \frac{g^2}{2} \langle V_{\mu} V_{\nu} V^{\mu} V^{\nu} - V_{\nu} V_{\mu} V^{\mu} V^{\nu} \rangle \tag{3}$$

$$\mathcal{L}_{III}^{(3V)} = ig\langle (V^{\mu}\partial_{\nu}V_{\mu} - \partial_{\nu}V_{\mu}V^{\mu})V^{\nu}\rangle$$
(4)

M. Bando, T. Kugo, and K. Yamawaki. Nonlinear Realization and Hidden Local Symmetries. Phys. Rept., 164:217314. 1988.

Formalism for VV interaction

Lagrangian for three vector vertex

$$\mathcal{L}_{III}^{(3V)} = ig \langle (V^{\mu} \partial_{\nu} V_{\mu} - \partial_{\nu} V_{\mu} V^{\mu}) V^{\nu} \rangle$$
(5)

SU(3) matrix of the vectors of the octet of ρ

$$V_{\mu} = \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & K^{*0} \\ K^{*-} & \overline{K}^{*0} & \phi \end{pmatrix}_{\mu}$$
(6)

$$g = \frac{M_V}{2f}, f = 93 MeV, M_v \approx 800 MeV$$

Formalism for VV interaction

Lagrangian for coupling of vector mesons to the baryon octet

$$\mathcal{L}_{BBV} = g\left(\langle \bar{B}\gamma_{\mu}[V^{\mu}, B] \rangle + \langle \bar{B}\gamma_{\mu}B \rangle \langle V^{\mu} \rangle\right)$$
(7)

SU(3) matrix of the baryon octet

$$B = \begin{pmatrix} \frac{1}{\sqrt{2}} \Sigma^{0} + \frac{1}{\sqrt{6}} \Lambda & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{1}{\sqrt{2}} \Sigma^{0} + \frac{1}{\sqrt{6}} \Lambda & n \\ \Xi^{-} & \Xi^{0} & -\frac{2}{\sqrt{6}} \Lambda \end{pmatrix}$$
(8)

and similar for the baryon decuplet.

5 / 20

Dynamically generated resonances

Amplitude for $VB \rightarrow VB$

$$V_{ij} = -C_{ij} \frac{1}{4f^2} \left(k^0 + k'^0\right) \vec{\epsilon} \vec{\epsilon}'$$

Using the Bethe Salpeter equation

$$T = [1 - V G]^{-1} V$$

we construct the scattering matrix, which poles correspond to the resonances. G is the loop function of a vector meson and a baryon. The couplings of the resonances to the different channels g_i , are obtained from the residues at the poles.

Figure: VB diagram

Figure: Diagrams involved in Bethe-Salpeter equation

Dynamically generated resonances

Figure: $|\mathcal{T}|^2$ with different channels for resonances of vector-baryon interaction

Resonances found with vector meson-baryon decuplet $^2\ ^3$

5, I		Theory				PDG da	ta	
	pole position	real axi mass	s width	name	J ^P	status	mass	width
0,1/2	1850 + i5	1850	11	N(2090)	$1/2^{-}$	*	1880-2180	95-414
				N(2080)	3/2-	**	1804-2081	180-450
		2270(bump)		N(2200)	$5/2^{-}$	**	1900-2228	130-400
0,3/2	1972 + i49	1971	52	$\Delta(1900)$	$1/2^{-}$	**	1850-1950	140-240
				$\Delta(1940)$	3/2-	*	1940-2057	198-460
				$\Delta(1930)$	$5/2^{-}$	* * *	1900-2020	220-500
		2200(bump)		$\Delta(2150)$	$1/2^{-}$	*	2050-2200	120-200
-1, 0	2052 + i10	2050	19	Λ(2000)	??	*	1935-2030	73-180
-1, 1	1987 + i1	1985	10	Σ(1940)	$3/2^{-}$	* * *	1900-1950	150-300
	2145 + i58	2144	57	Σ(2000)	$1/2^{-}$	*	1944-2004	116-413
	2383 + i73	2370	99	Σ(2250)	??	* * *	2210-2280	60-150
				Σ(2455)	??	**	2455 ± 10	100-140
-2, 1/2	2214 + i4	2215	9	Ξ(2250)	?'	**	2189-2295	30-130
	2305 + i66	2308	66	Ξ(2370)	??	**	2356-2392	75-80
	2522 + i38	2512	60	Ξ(2500)	??	*	2430-2505	59-150
-3,0	2449 + i7	2445	13	Ω(2470)	??	**	2474±12	72±33

Table: The properties of the ten dynamically generated resonances and their possible PDG counterparts. We also include the N^* bump around 2270 MeV and the Δ^* bump around 2200 MeV.

² Sourav Sarkar, Bao-Xi Sun, E. Oset, and M. J. Vicente Vacas. Dynamically generated resonances from the vector octet- baryon decuplet interaction. *Eur. Phys. J.*, A44: 431, 2010.

P. Gonzalez, E. Oset and J. Vijande, Phys. Rev. C 79 (2009) 025209

Resonances found with vector meson-baryon octet⁴

1, 5	Th			PDG dat	a			
	pole position	real	axis					
		mass	width	name	JP	status	mass	width
1/2,0	_	1696	92	N(1650)	$1/2^{-}$	* * **	1645-1670	145-185
				N(1700)	$3/2^{-}$	* * *	1650-1750	50-150
	1977 + i53	1972	64	N(2080)	$3/2^{-}$	**	pprox 2080	180-450
				N(2090)	$1/2^{-}$	*	≈ 2090	100-400
0, -1	1784 + i4	1783	9	Λ(1690)	$3/2^{-}$	* * **	1685-1695	50-70
				A(1800)	$1/2^{-}$	* * *	1720-1850	200-400
	1907 + i70	1900	54	Λ(2000)	??	*	≈ 2000	73-240
	2158 + i13	2158	23					
1, -1		1830	42	Σ(1750)	$1/2^{-}$	* * *	1730-1800	60-160
	_	1987	240	Σ(1940)	$3/2^{-}$	* * *	1900-1950	150-300
				Σ(2000)	$1/2^{-}$	*	pprox 2000	100-450
1/2, -2	2039 + i67	2039	64	Ξ(1950)	??	* * *	1950 \pm 15	60 ± 20
	2083 + i31	2077	29	Ξ(2120)	??	*	pprox 2120	25

Table: The properties of the nine dynamically generated with vector and baryon octet resonances and their possible PDG counterparts.

 $^{^{\}rm 4}$ E. Oset and A. Ramos. Dynamically generated resonances from the vector octet-baryon octet interaction. *Eur. Phys. J.*, A44:445, 2010.

(Radiative decay)

Helicity amplitudes Con

Lagrangian of the V γ coupling

The peculiarity of this theory concerning photons is that they couple to hadrons by converting first into a vector meson, ρ^0 , ω , ϕ .

$$\mathcal{L}_{V\gamma} = -M_V^2 \frac{e}{\tilde{g}} A_\mu \langle V^\mu Q \rangle$$
 (9)

where Q is the charge matrix

$$Q \equiv \left(egin{array}{ccc} 2/3 & 0 & 0 \ 0 & -1/3 & 0 \ 0 & 0 & -1/3 \end{array}
ight) \ (10)$$

Figure: Coupling of a γ to a baryon thought a vector meson

Previous work in radiative decay of mesons

Decay of the $f_0(1370)$ and $f_2(1270)$ into $\gamma\gamma^5$

$$S = 2 \ \Gamma = \frac{1}{5} \frac{1}{16\pi} \frac{1}{M_R} g_T^2 \frac{7}{3} \frac{1}{12} e^4 \left(\frac{2f}{M_\rho}\right)^2 \xrightarrow{\rho^0} \int_{\Gamma} \int_{\Gamma} \int_{\Gamma} \frac{1}{16\pi} \frac{1}{M_R} g_S^2 \frac{2}{3} \frac{1}{12} e^4 \left(\frac{2f}{M_\rho}\right)^2 \xrightarrow{\rho^0} \int_{\Gamma} \int_{\Gamma} \frac{1}{16\pi} \frac{1}{M_R} g_S^2 \frac{2}{3} \frac{1}{12} e^4 \left(\frac{2f}{M_\rho}\right)^2 \xrightarrow{\Gamma} \int_{\Gamma} \frac{1}{16\pi} \frac{1}{M_R} g_S^2 \frac{2}{3} \frac{1}{12} e^4 \left(\frac{2f}{M_\rho}\right)^2 \xrightarrow{\Gamma} \int_{\Gamma} \frac{1}{16\pi} \frac{1}{M_R} g_S^2 \frac{2}{3} \frac{1}{12} e^4 \left(\frac{2f}{M_\rho}\right)^2 \xrightarrow{\Gamma} \int_{\Gamma} \frac{1}{16\pi} \frac{1}{M_R} g_S^2 \frac{2}{3} \frac{1}{12} e^4 \left(\frac{2f}{M_\rho}\right)^2 \xrightarrow{\Gamma} \int_{\Gamma} \frac{1}{16\pi} \frac{1}{M_R} g_S^2 \frac{2}{3} \frac{1}{12} e^4 \left(\frac{2f}{M_\rho}\right)^2 \xrightarrow{\Gamma} \int_{\Gamma} \frac{1}{16\pi} \frac{1}{M_R} g_S^2 \frac{1}{3} \frac{1}{12} e^4 \left(\frac{2f}{M_\rho}\right)^2 \xrightarrow{\Gamma} \int_{\Gamma} \frac{1}{16\pi} \frac{1}{M_R} g_S^2 \frac{1}{3} \frac{1}{12} e^4 \left(\frac{2f}{M_\rho}\right)^2 \xrightarrow{\Gamma} \int_{\Gamma} \frac{1}{16\pi} \frac{1}{M_R} g_S^2 \frac{1}{3} \frac{1}{12} e^4 \left(\frac{2f}{M_\rho}\right)^2 \xrightarrow{\Gamma} \int_{\Gamma} \frac{1}{16\pi} \frac{1}{M_R} g_S^2 \frac{1}{3} \frac{1}{12} e^4 \left(\frac{2f}{M_\rho}\right)^2 \xrightarrow{\Gamma} \int_{\Gamma} \frac{1}{16\pi} \frac{1}{M_R} g_S^2 \frac{1}{3} \frac{1}{12} e^4 \left(\frac{2f}{M_\rho}\right)^2 \xrightarrow{\Gamma} \int_{\Gamma} \frac{1}{16\pi} \frac{1}{M_R} g_S^2 \frac{1}{3} \frac{1}{12} e^4 \left(\frac{2f}{M_\rho}\right)^2 \xrightarrow{\Gamma} \int_{\Gamma} \frac{1}{16\pi} \frac{1}{M_R} \frac{1}{16\pi} \frac{1}{M_R} \frac{1}{16\pi} \frac{1}{M_R} \frac{1}{16\pi} \frac{1}{M_R} \frac{1}{16\pi} \frac{1}{M_R} \frac{1}{16\pi} \frac{1}{M_R} \frac{1}{12} \frac{1}{12} e^4 \left(\frac{2f}{M_\rho}\right)^2 \xrightarrow{\Gamma} \int_{\Gamma} \frac{1}{16\pi} \frac{1}{M_R} \frac{1}{16\pi} \frac{1}{M_R} \frac{1}{12} \frac{1}{M_R} \frac{1}{M_R$$

$$\Gamma(f_2(1270) \rightarrow \gamma \gamma) = 2.6 \text{KeV}$$

In a good agreement with experiment.

⁵ H. Nagahiro, J. Yamagata-Sekihara, E. Oset, and S. Hirenzaki. The $\gamma\gamma$ decay of the $f_0(1370)$ and $f_2(1270)$ resonances in the hidden gauge formalism. *Phys. Rev.*, D79:114023, 2009.

Radiative decay of dynamically generated resonances from vector-baryon

(Radiative decay)

Radiative decay of baryons into γ -Baryon

Amplitude of R-B γ transition

$$t_{\gamma} = -rac{e}{ ilde{g}} \sum_{j=
ho^0, \ \omega, \ \phi} g_j F_j$$
 (11)

$$F_{j} = \begin{cases} \frac{1}{\sqrt{2}} & \text{for } \rho^{0} \\ \frac{1}{3\sqrt{2}} & \text{for } \omega \\ -\frac{1}{3} & \text{for } \phi \end{cases}$$
(12)

 $\widetilde{g} = rac{M_V}{2f}; \quad f = 93 MeV$ $e^2 = 4\pi lpha$

Figure: $R \rightarrow B\gamma$ diagram

Width of the R-B γ

$$\Gamma_{\gamma} = \frac{1}{2\pi} \frac{2}{3} \frac{M_B}{M_R} q |t_{\gamma}|^2$$
 (13)

A short example

$$m_{R} = 1696 \quad I = 1/2, \ S = 0, \quad \rho N, \ \omega N, \ \phi N$$
$$|\rho N, \frac{1}{2}, \frac{1}{2}\rangle = -\sqrt{\frac{1}{3}} |\rho^{0} \rho\rangle - \sqrt{\frac{2}{3}} |\rho^{+} n\rangle$$
(14)

$$|\rho N, \frac{1}{2}, -\frac{1}{2}\rangle = \sqrt{\frac{1}{3}}|\rho^0 n\rangle - \sqrt{\frac{2}{3}}|\rho^- p\rangle$$
 (15)

Amplitude of R-B γ transition for $\textit{I}_3=1/2$

$$t_{\gamma} = -\frac{e}{\tilde{g}} \sum_{j=\rho^{0}, \omega, \phi} g_{j}F_{j} = -\frac{e}{\tilde{g}} \left(-\frac{1}{\sqrt{3}} \frac{1}{\sqrt{2}} 3.2 + \frac{1}{3\sqrt{2}} 0.1 - \frac{1}{3} (-0.2) \right) = -\frac{e}{\tilde{g}} 1.4$$

$$|t_{\gamma}|^{2} = \frac{4\pi\alpha}{4.3^{2}} 1.4^{2} = 9.68 \cdot 10^{-3}$$
 $q = q_{\gamma} = \frac{M_{R}^{2} - M_{B}^{2}}{2M_{R}} = 588.6 \ MeV$

$$\Gamma = rac{1}{2\pi} rac{2}{3} rac{M_B}{M_R} q |t_\gamma|^2 = 334 \; KeV$$

Decay width of γ -baryon decuplet⁶

5, I	Theory	PDG	data		Pi	redicted wi	dth (Ke	V) for I ₃		
	pole position (MeV)	name	J ^P	-3/2	-1	-1/2	0	1/2	1	3/2
0,1/2	1850 + i5	N(2090)	$1/2^{-}$			722		722		
		N(2080)	$3/2^{-}$							
0,3/2	1972 + i49	$\Delta(1900)$	$1/2^{-}$	1582		203		143		1402
		$\Delta(1940)$	$3/2^{-}$							
		$\Delta(1930)$	$5/2^{-}$							
-1, 0	2052 + i10	Λ(2000)	??				583			
-1, 1	1987 + i1	Σ(1940)	$3/2^{-}$		20		199		561	
		Σ(2000)	$1/2^{-}$							
	2145 + i58	Σ(2250)	??		2029		206		399	
	2383 + i73	Σ(2455)	??		537		277		182	
-2, 1/2	2214 + i4	Ξ(2250)	?'			54		815		
	2305 + i66	Ξ(2370)	??			1902		320		
	2522 + i38	Ξ(2500)	??			165		44		
-3, 1	2449 + i7	Ω(2470)	??				330			

Table: The predicted radiative decay widths of the ten dynamically generated resonances for different isospin projection I_3 . Their possible PDG counterparts are also listed. Note that the $\Sigma(2000)$ could be the spin parter of the $\Sigma(1940)$, in which case the radiative decay widths would be those of the $\Sigma(1940)$.

^b B. X. Sun, E. J. Garzon and E. Oset, "Radiative decay into gamma-baryon of dynamically generated resonances from the vector-baryon interaction," arXiv:1003.4664 [hep-ph].

Decay width of γ -baryon octet⁷

5, I	Theory	PDG (data		Predicted	d width (KeV) for <i>I</i> 3	
	pole position (MeV)	name	J ^P	$^{-1}$	-1/2	0	1/2	1
0,1/2	1696	N(1650)	$1/2^{-}$		334		253	
		N(1700)	$3/2^{-}$					
	1977 + i53	N(2080)	$3/2^{-}$		196		79	
		N(2090)	$1/2^{-}$					
-1, 0	1784 + i4	Λ(1690)	$3/2^{-}$			65 (166)		
		Λ(1800)	$1/2^{-}$					
	1907 + i70	Λ(2000)	??			321 (21)		
	2158 + i13					0 (17)		
-1, 1	1830 + i40	Σ(1750)	$1/2^{-}$	363		69 (240)		7
	1987 + i240	Σ(1940)	$3/2^{-}$	307		27 (90)		426
		Σ(2000)	$1/2^{-}$					
-2, 1/2	2039 + i67	Ξ(1950)	??		400		89	
	2082 + i31	Ξ(2120)	??		212		84	

Table: The predicted radiative decay widths of the nine dynamically generated resonances for different isospin projection I_3 . Their possible PDG counterparts are also listed. The values in the bracket for $I_3 = 0$ denote widths for the radiative decay into $\Lambda\gamma$, while the values outside the bracket denote widths for $\Sigma\gamma$.

¹ B. X. Sun, E. J. Garzon and E. Oset, "Radiative decay into gamma-baryon of dynamically generated resonances from the vector-baryon interaction," arXiv:1003.4664 [hep-ph].

(Helicity amplitudes)

Definition for the helicity amplitudes

$$A_{1/2}^{N^*} = \sqrt{\frac{2\pi\alpha}{k}} \frac{1}{e} \left\langle N^*, J_z = 1/2 |\epsilon_{\mu}^{(+)} J^{\mu}| N, J_z = -1/2 \right\rangle$$
(16)

$$A_{3/2}^{N^*} = \sqrt{\frac{2\pi\alpha}{k}} \frac{1}{e} \left\langle N^*, J_z = 3/2 |\epsilon_{\mu}^{(+)} J^{\mu}| N, J_z = 1/2 \right\rangle$$
(17)

$$A_{1/2}^{J=1/2} = -t_{\gamma} \frac{1}{\sqrt{2k}} C(1/2, 1, 1/2; -1/2, 1, 1/2) = \frac{1}{\sqrt{2k}} \sqrt{\frac{2}{3}} t_{\gamma}$$
(18)

$$A_{1/2}^{J=3/2} = -t_{\gamma} \frac{1}{\sqrt{2k}} C(1/2, 1, 3/2; -1/2, 1, 1/2) = -\frac{1}{\sqrt{2k}} \sqrt{\frac{1}{3}} t_{\gamma}$$
(19)

$$A_{3/2}^{J=3/2} = -t_{\gamma} \frac{1}{\sqrt{2k}} C(1/2, 1, 3/2; 1/2, 1, 1/2) = -\frac{1}{\sqrt{2k}} t_{\gamma}$$
(20)

Decay width with helicity amplitudes

 γ -decay width using helicity amplitudes (PDG 2008 pag 1076)

$$\Gamma_{\gamma} = \frac{k^2}{\pi} \frac{2M_B}{(2J_R + 1)M_R} \left[(A_{1/2})^2 + (A_{3/2})^2 \right]$$
(21)

We reproduce the radiative decay width of Eq. (13) using the helicity amplitudes definition

$$J^{P} = 1/2^{-} \quad \Gamma_{\gamma} = \frac{k^{2}}{\pi} \frac{2M_{B}}{2M_{R}} \left[\frac{2}{3} |t_{\gamma}|^{2} \frac{1}{2k} \right] = \frac{1}{2\pi} \frac{2}{3} \frac{M_{B}}{M_{R}} k |t_{\gamma}|^{2}$$
$$J^{P} = 3/2^{-} \quad \Gamma_{\gamma} = \frac{k^{2}}{\pi} \frac{2M_{B}}{4M_{R}} \left[\frac{1}{3} |t_{\gamma}|^{2} + |t_{\gamma}|^{2} \right] \frac{1}{2k} = \frac{1}{2\pi} \frac{2}{3} \frac{M_{B}}{M_{R}} k |t_{\gamma}|^{2}$$

Helicity amplitudes

Helicity amplitudes for the N* dynamically generated resonances with the baryon octet

PDG (data			Helicity a	mplitudes 10 ⁻	$^{3}(GeV^{-1/2})$			
name	J ^P	Decay	Our Theory	Exp. ⁸ PDG	Exp. ⁹ Barbour	Exp. ¹⁰ Devenish	Th. ¹¹	Th. ¹²	Th. ¹³
N(1650)	$1/2^{-}$	$A_{1/2}^{p}$	64 ± 7	53 ± 16			5	46	54
		$A_{1/2}^{\hat{n}'}$	-74 ± 7	-15 ± 4			-16	-58	-35
N(1700)	$3/2^{-}$	$A_{1/2}^{p'}$	-46 ± 5	-18 ± 13	-33 ± 21		-13	-3	-33
		$A_{3/2}^{p'}$	-79 ± 9	-2 ± 24	-14 ± 25		-10	15	18
		$A_{1/2}^{n/2}$	52 ± 5	0 ± 50	50 ± 42		16	14	-3
		$A_{3/2}^{n'}$	91 ± 9	-3 ± 44	35 ± 30		-42	-23	-30
N(2080)	$3/2^{-}$	$A_{1/2}^{p}$	-21 ± 5	-20 ± 8		26 ± 52			
		$A_{3/2}^{p'}$	-36 ± 8	17 ± 11		128 ± 57			
		$A_{1/2}^{n'}$	-29 ± 5	7 ± 13		53 ± 83			
		$A_{3/2}^{n'}$	-50 ± 8	-53 ± 34		100 ± 141			
N(2090)	$1/2^{-}$	$A_{1/2}^{p'}$	30 ± 6						
		$A_{1/2}^{n'}$	41 ± 6						

⁸ Claude Amsler et al. Review of particle physics. Phys. Lett., B667:1, 2008.

⁹ I. M. Barbour, R. L. Crawford, and N. H. Parsons. Nucl. Phys., B141:253, 1978.

¹⁰ R. C. E. Devenish, D. H. Lvth, and W. A. Rankin, Phys.Lett., B52:227, 1974.

¹¹ D. Merten, U. Loring, K. Kretzschmar, B. Metsch, and H. R. Petry, Eur. Phys. J., A14:477489, 2002. 12 C. E. Carlson and C. D. Carone. Phys. Rev.,

D58:053005. 1998.

13 S. Capstick. Phys. Rev., D46:28642881, 1992.

Conclusions

- In some resonances (e.g. N(1940) or Σ(1750)), the radiative decay width varies an order of magnitude for different third component of isospin, this should be a good test for the theory.
- Data of the decay width could be used to determine the nature of some resonances like N(2080), N(2090) or Σ(2000).
- Some discrepancies in the helicity amplitudes could be due to the fact that the PDG average are probably done over different resonances.
- Despite some disagreements, this theory provides a general agreement of better quality than other theories.
- The theory predicts a ratio of $\frac{1}{\sqrt{3}}$ between $A_{3/2}^{3/2}$ and $A_{1/2}^{3/2}$ that should be tested and could be used to correctly identify the resonances.
- More data on helicity amplitudes are needed and the separation of different states would be useful to further learn about the nature of baryon resonances.

Thank you for your attention

